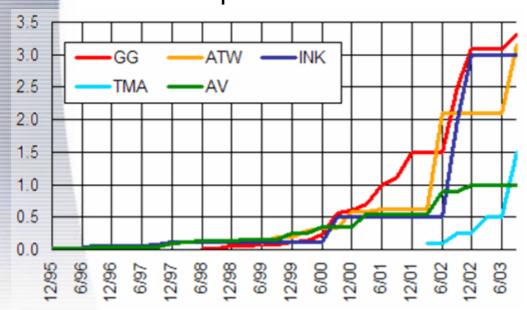


Data Cleansing for Web Information Retrieval using Query Independent Features

Yiqun Liu, Min Zhang, Liyun Ru, Shaoping Ma State Key Lab of Intelligent Tech. & Sys. Tsinghua University


清学大学 Tainghua University

Outlines

- Data cleansing and its applications in Web IR
- Query-independent features used in data cleansing
- Algorithm and evaluation
- Conclusions and future work

Data cleansing and its applications in Web Runiversity

- Index Size War between Search Engines
 - Billions Of Textual Documents Indexed
 December 1995-September 2003

Data cleansing and its applications in Websil Runiversity

Index Size War between Search Engines (cont.)

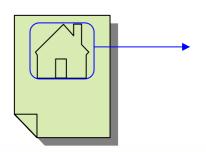
Search Engine	Reported Size	Page Depth
Google	8.1 billion (Dec. 2004)	101K
MSN	5.0 billion	150K
Yahoo	19.2 bilion (Aug. 2005)	500K
Ask Jeeves	2.5 billion	101K+
All the Web	152 billion	605K
All the Surface Web	10 billion	8K

From Danny Sullivan, SearchEngineWatch web site

Data cleansing and its applications in Websil Runiversity

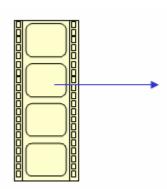
- An end to the index size war?
 - No search engine can cover all resources on the Web

	Google	Yahoo!	MSN	Teoma
Round 1	76.30%	69.28%	62.03%	57.58%
Round 2	76.09%	69.29%	61.90%	57.69%
Round 3	76.27%	69.37%	61.87%	57.70%
Round 4	76.05%	69.30%	61.73%	57.57%
Round 5	76.11%	69.26%	61.96%	57.56%
Average	76.16%	69.32%	61.90%	57.62%


 In Sep. 2005, Google removes the number of indexed pages because "absolute numbers are no longer useful"

Data cleansing and its applications in Web Runiversity

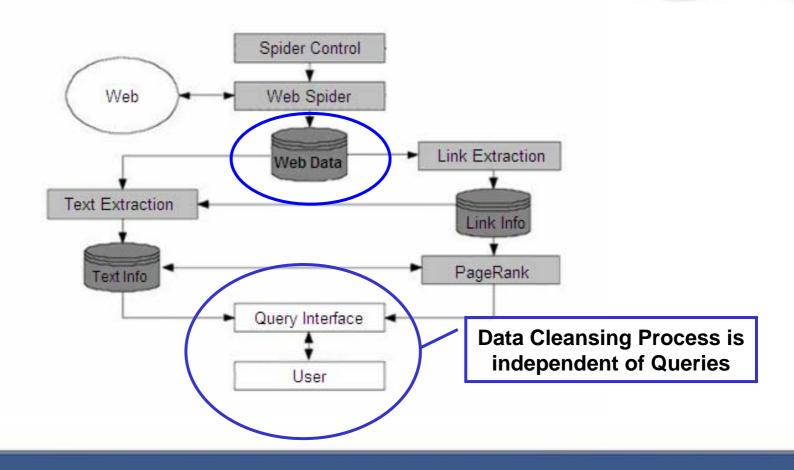
- Data quality is more important than quantity for Web IR tools
 - Spams and SEOs
 - Duplicates in Web pages
 - Unreliable, out-dated data
- Current data cleansing algorithms in Web IR
 - Local scale data cleansing
 - Global scale data cleansing


Data cleansing and its applications in Web Runiversity

- Local scale data cleansing
 - To reduce the useless blocks / To find the important blocks inside a Web page
 - Reduce spam hyperlinks / useless hyperlinks
 (Kushmerick et. al.)
 - Reduce Ad. Contexts (Davison et. al.)
 - VIsion Based Page Segmentation, VIPS, MSRA
 - Site template detecting (Yossef et. al.)

Data cleansing and its applications in Webil Runversity

- Global scale data cleansing
 - To reduce low quality pages / To locate important pages inside a given Web page corpus
 - Hyperlink structure analysis algorithms
 - PageRank, HITS
 - Hypothesis 1: Recommendation
 - Hypothesis 2: Topic locality
 - Challenged by Spam links and SEOs
 - Monika Henzinger (Google Research Director): A better estimate of the quality of a page requires additional sources of information.



Data cleansing and its applications in Web Runiversity

- Our data cleansing method
 - Global scale data cleansing
 - Learn from "what users need"
 - Users' information requirement is reflected in their search target pages (pages that they want to find)
 - A better data cleansing method should judge the quality of a Web page by whether it can be a search target for a certain user query.
 - Both hyperlink structure features and other kinds of features should be considered in data cleansing

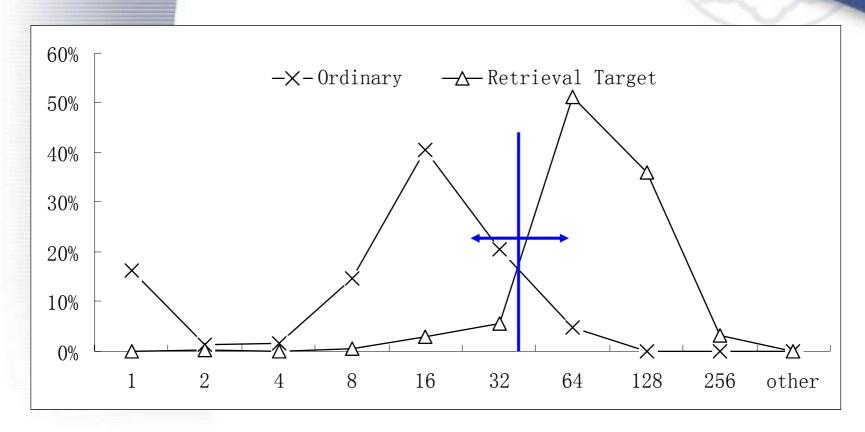
Data cleansing and its applications in Web의民university

Query-independent Data Cleansing

Outlines

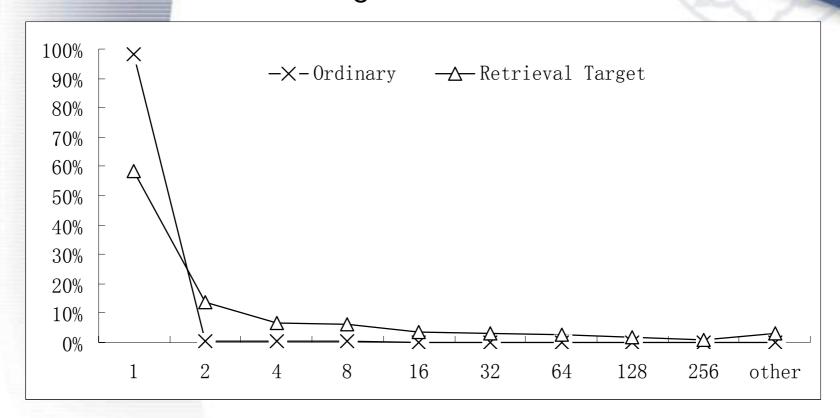
- Data cleansing and its applications in Web IR
- Query-independent features used in data cleansing
- Algorithm and evaluation
- Conclusions and future work

Query-independent features used in data clearisting inversity

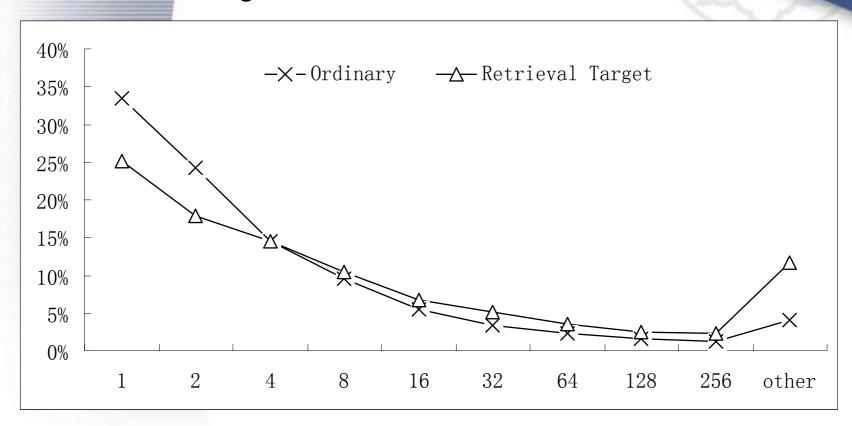

- Query-independent feature analysis of High Quality Pages
 - Corpus
 - 37M Chinese web pages collected in Nov. 2005
 - Over 0.5 Terabyte.
 - Obtained from Sogou.com
 - High Quality Page (Search Target Page)
 - Training set: 1600 pages
 - Test set: 17000 pages
 - Evaluated manually by Sogou engineers

Query-independent features used in data clearisting inversity

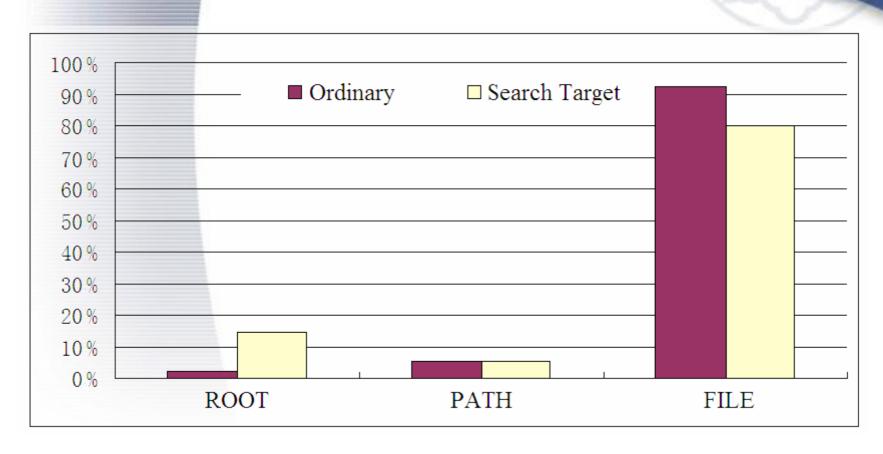
- Hyperlink structure related features
 - PageRank
 - In-link number
 - In-link anchor text length
- Other features
 - Document length
 - Number of duplicates
 - URL length
 - Encode


Query-independent features used in data clearistric priversity

PageRank


Query-independent features used in data clearising/niversity

In-link anchor text length


Query-independent features used in data clearising inversity

Document length

Query-independent features used in data clearising diversity

URL Length

Query-independent features used in data clearisting deliversity

Other features

	Ordinary	High Quality
URL contains "?"	13.06%	1.87%
Encode is not GBK	14.04%	1.39%
Hub type page	3. 78%	24.77%

 The query-independent features can separate high quality pages from ordinary pages

清学ス学 Tainghua University

Outlines

- Data cleansing and its applications in Web IR
- Query-independent features used in data cleansing
- Algorithm and evaluation
- Conclusions and future work

電大学院 VicevinU audonicT

Algorithm and evaluation

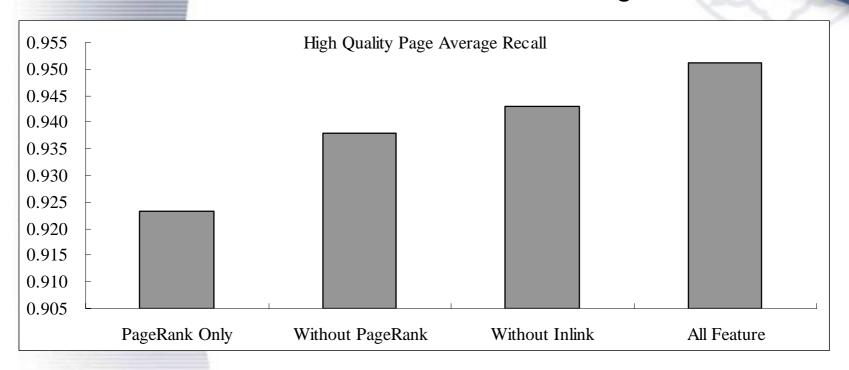
- A learning based data cleansing algorithm
 - The possibility of one web page being a search target page is: $P(p \in Target \ page \mid p \ has \ feature \ A)$

```
P(p \in Target \ page \mid p \ has \ feature \ A)
= \frac{P(p \ has \ feature \ A \mid p \in Target \ page)}{P(p \ has \ feature \ A)} \times P(p \in Target \ page)
```

```
\frac{P(p \text{ has feature } A \mid p \in Target \text{ page})}{P(p \text{ has feature } A)}
= \frac{\#(p \text{ has feature } A \cap p \in Target \text{ page})}{\#(Target \text{ page})} / \frac{\#(p \text{ has feature } A)}{\#(Ordinary \text{ page})}
```


Algorithm and evaluation

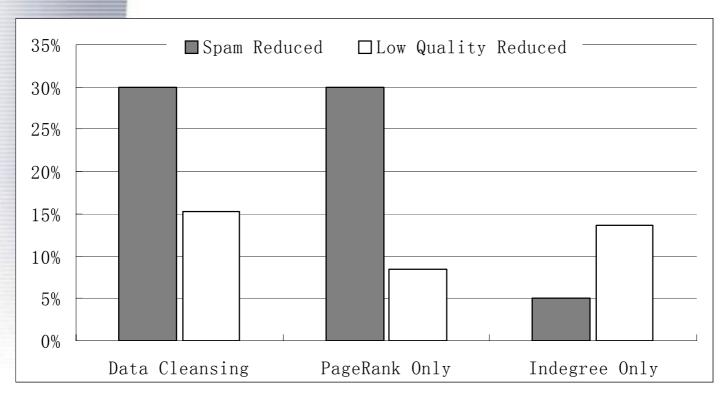
General information of the cleansed corpus


	Current Size / Original Size	High Quality Recall (Training Set)	High Quality Recall (Test Set)
Reduced Page Set	95.04%	7.27%	7.63%
Cleansed Corpus	4.96%	92.73%	92.37%

 The cleansed corpus contains about 5% pages in the original corpus, but can meet 92% user needs.

Algorithm and evaluation

Function of different features in our algorithm



 Although PageRank plays an important role in the algorithm, we don't rely on this single feature.

Algorithm and evaluation

 The possibility of reducing spam/low quality pages using our data cleansing algorithm

デザ大学 Tainghua University

Outlines

- Data cleansing and its applications in Web IR
- Query-independent features used in data cleansing
- Algorithm and evaluation
- Conclusions and future work

清学大学 Tainghua University

Conclusions and future work

Conclusions:

- Query-independent features can separate Search
 Target Pages from ordinary pages
- It is possible to reduce 95% web pages with a small loss in key information
- The data cleansing algorithm can also reduce part of spam pages / low quality pages

デジス学 Tainghua University

Conclusions and future work

- Future work
 - Retrieval in the cleansed corpus
 - Hyper link analysis in the cleansed corpus
 - A learn-based algorithm to reduce spam pages / low quality pages
 - Personalized search

Thank you!

Questions or comments?