Learning-based Web Data Cleansing for
Information Retrieval
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+ Index % War between Search Engines

— Billions Of Textual Documents Indexed
December 1995-September 2003
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From Danny Sullivan, SearchEngineWatch web site
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Search Englne Reported Size Page Depth
8.1 billion
Google (Dec. 2004) 101K
MSN 5.0 billion 150K
19.2 bilion
Yahoo (Aug. 2005) 500K
Ask Jeeves 2.5 billion 101K+
All the Web 152 billion 605K
All the Surface -
Web 10 billion 8K

From Danny Sullivan, SearchEngineWatch web site
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* An enﬁthe index size war?
- In 5@2005 Google removes the number of indexed

]

pages because “absolute numbers are no longer useful”
— No sear 2arch engine can cover all resources on the Web
Round 1 76.30% 69.28% 62.03% 57.58%
Round 2 76.09% 69.29% 61.90% 57.69%
Round 3 16.21% 69.37% 61.87% 57.70%
Round 4 76.05% 69.30% 61.73% 57.57%
Round 5 76.11% 69.26% 61.96% 57.56%
Average 76.16% 69.32% 61.90% 57.62%
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o Datac
IR tools
— Spa%and SEQs
— Dupﬁes In Web pages
— Unreliable, out-dated data

¢ Curren:‘cuta cleansing algorithms in Web IR

— Local scale data cleansing
— Global scale data cleansing
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+ Local scale data cleansing
- To r@ce the useless blocks / To find the important
blocks inside a Web page
— REd.E spam hyperlinks / useless hyperlinks
(KusTﬁerick et. al.)
— Red@Ad Contexts (Davison et. al.)

_ Vision Based Page Segmentation, VIPS, MSRA

— Site template detecting (Yossef et. al. ) @ |
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. Globalﬁle data cleansing

- To r@ﬁe low quality pages / To locate important pages
inside a given Web page corpus

— Hyp%ﬁ]k structure analysis algorithms
. P@amk, HITS )
. H%ﬁ__hesis 1: Recommendation :
» Hypothesis 2: Topic locality -
» Challenged by Spam links and SEOs -

— Monika Henzinger (Google Research Director): A better

estimate of the quality of a page requires additional
sources of Information.
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+ Our data cleansing method
— Global scale data cleansing
= Leagj “what users need”
— Useﬂ%\formaﬂon requirement is reflected in their
search target pages (pages that they want to find)
- A be’ﬁdata cleansing method should judge the quality
ne a search target for a

of @ Web page by whether it can

certain user query.
— Both hyperlink structure features and other kinds of

features should be considered in data cleansing
D
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» Query-independent Data Cleansing

— Spider Control
i 3 :
\Weh /H- =  \Web Spider
|- @ Link Extraction
= e

PageRank

Data Cleansing Process is

= Query Interfface =
independent of Queries
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— Corpus
%hmese web pages collected in Nov. 2005

(EO 5 Terabyte.
. &Eﬁ"@jed from Sogou.com
— High Quality Page (Search Target Page)
e Training set: 1600 pages

 Test set: 17000 pages
o Evaluated manually by Sogou engineers
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— In-link anchor text length

« Other features

— Document length

_ Number of duplicates
— URL length

— Encode
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* In-link anchor text length
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Ordinary High Quality

URL contains “?” 13. 06% 1. 87%
Encode is not GBK 14. 04% 1.39%
Hub type page 3. 8% 24. 77%

* The query Independent features can separate high
quality pages from ordinary pages
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o Difficulties in algorithms

— Web page classification
— Lack af negative examples (uniform sampling is
difficult and sometimes not possible)
— Learning with unlabeled data and positive examples
— Previous work:
¢ O-SVM
« PEBL.: Positive Example Based Learning

 Not quite suitable for learning based on topic-independent
features
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« Why E.E?means used here?
— Learn without negative examples
— Independent of prior positive proportion
Kknowledge

o Differences with traditional K-means

— Fixe uster number: true or not.
— Initial positive example centroid is provided

rl:
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R : estimated proportion of the positive examples
1. Choese 2 initial cluster centroids:

g

ﬁthﬂa centroid: M, =

1
o Ska:y E-YESLH:” X
— Negative centroid: Ms =

gl

M (W hole Collection)— Rx M,
1-R

2 I@h iterative, instance X will be assigned to the jth cluster S[ ) if
X — MP|| = min(|| X -

\HH

—

M 1x = M)

(J =1, 2)
3. For Sj{ ], caculate M {k], which is defined as:

M = ZYESMX (j=1,2)

4. 1 MY = M| exit. Else go to 2
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¢ Algon )m converges with different initial R
— Algorithm doesn't require prior knowledge of R
~ |nitial = 1/6 —~ |nitial = 1/3
8 0.8
= —
0.70 |
0.65
1 2 3 4 5 6 7 8 9 10 11 12 13
lterate
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Evaluﬁé_é (Based on .GOV corpus)

— Algoﬁ%@n can cover almost all high quality pages with
less 'vain half whole collection size

K-means Clustering

Whole@ﬂection (.GOV) Coverage 44.30%
High Quality Page Test Set Recall 89.70%
High @y Page Test Set Precision 67.50%
F2-measure 03.89%

— Retrieval Experiment Settings
 20% navigational type queries
* 80% informational/transactional type queries
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Evalu@
= P@10 for Topic MRR for
% Distillation queries  Navigational query
Whole Collection 0.1025 0.7443
-- 0.1275 0.7278
0.1134 0.6533
0.1100 0.6700
0.1250 0.6357

— Cleansed set gains better performance than whole

collection

— K-means based cleansing outperforms link-analysis

criterion
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. Conch@ns

- Datac Eansmg based on K-means clustering is effective
In re@:mg unimportant pages.

— Cleansed set (half size of total collection) retains useful
mfo@lon of the Web collection.

- Retr%I on result set gets better overall retrieval
performance than the whole collection.
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. Futuregrk

- Algoi%n Efficiency Problem
. N@ Bayes based learning method

(Dﬁ Cleansing for Web Information Retrieval using Query
In&gendent Features, to be appeared in JASIST, Jan, 2007 )

— Hyper link analysis in the cleansed corpus
» The cleansed corpus retains almost all hyper link information

— A learn-based algorithm to reduce spam pages / low
quality pages
e Similar way: learn from positive example and unlabelled data
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Thank you!
Questions or comments?
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